Size matters:

predation of fish eggs and larvae by native and invasive amphipods

Nigel G. Taylor & Alison M. Dunn University of Leeds, UK bsngt@leeds.ac.uk <a>> @ngltaylor

& supported by a NEOBIOTA Scholarship (Fonds National de la Recherche, European Weed Research Society, Administration de la nature et des forêts, Département de l'Environnement – Ministère du Développement durable et des Infrastructures, Fondation Faune-Flore, Luxembourg Naturalist Society)

Introduction

The killer shrimp Dikerogammarus villosus is an invasive amphipod Crustacean in western Europe. Its native range is in south eastern Europe.

- D. villosus is a voracious predator, consuming \bullet a range of macroinvertebrates in the lab¹ and field².
- D. villosus has also been observed to prey upon \bullet fish eggs^{1,5}.

This predation is thought to contribute to changes in macroinvertebrate community structure^{2,3} and function⁴ following *Dikerogammarus* invasion. Abundance of resident macroinvertebrates declines – especially amphipods, isopods and worms^{2,3}.

Large

D. villosus

Concerns over declines in fish populations following Dikerogammarus invasion, analogous to macroinvertebrate declines – but these were poorly quantified.

Aim:

Quantify predatory impact of Dikerogammarus villosus on fish eggs and larvae

PREDATORS

- Compare impact of invader to native analogue. Is D. villosus worse than shrimp it may replace?
 - Use size-matched amphipods (to compare intrinsic • differences in impact) and larger D. villosus (to reflect natural size differences).

Intermediate **D.** villosus

Native Gammarus pulex PREY Ghost carp Cyprinus carpio small eggs and larvae, warmer water

> **OR** brown trout Salmo trutta large eggs and larvae, cooler water

Experiment 1: Functional Response (FR)

Consumption of prey across a range of prey densities

Each replicate:

OOD

Experiment 2: Electivity

= proportion of different food items in the diet

METHODS

Food = eggs or larvae at a set density 1, 2, 3, 5, 8, 10/12, 15/16, 25, 35, 50 or 80 prey supplied

Analysis: determine FR type using logistic regression, then fit FR curves (Rogers' random predator equation)

RESULTS

onclusions

(

On carp eggs/larvae:	large D . villosus have higher max. feeding rate than smaller amphipods (Fig. I)
On trout larvae:	Predation low, but <i>D. villosus</i> more likely than <i>G. pulex</i> to kill larvae
On trout eggs:	minimal predation by any amphipod

Are carp eggs/larvae consumed even when other food present?

METHODS

Food = 4 types in equal masses fish eggs/larvae + leaf litter + plant + macroinvertebrates Analysis: compare mass consumed and diet composition

RESULTS

回帰回 2552 時

D. villosus consume more overall, With carp eggs: Large consume more eggs and are more predatory than smaller amphipods (Fig. 2). Intermediate D. villosus consume more eggs than G. pulex.

With carp larvae: No difference in larval consumption, but large **D.** villosus more predatory (data not shown)

24h carp 48h trout

How many prey remaining?

Fig. I Functional responses of amphipods using carp eggs as prey for 24h. Lines are Type II FRs, shaded areas are 95% bootstrapped CIs

Fig. 2 Percentage of each food type in amphipod diet. Each coloured polygon represents one amphipod (*n* in centre of each plot)

I. Invasive D. villosus is a more damaging egg/larval predator than native G. pulex – but mainly because it is bigger

Large D. villosus most likely to kill trout larvae + has higher FRs on carp + consumes more carp eggs when alternative food present

Intermediate Dv rarely consumes > G_p ; any differences small in magnitude

2. Influence of abundance?

D. villosus may reach higher densities than G. $pulex^6$ – which would multiply its per capita effect

3. Negative effect on fish recruitment?

Increased mortality of juveniles \rightarrow strong effects later in life⁷

References: (1) Platvoet et al. 2009 (2) van Riel et al. 2006 (3) Gergs & Rothaupt 2015 (4) Boeker & Giest 2015 (5) Casellato et al. 2007 (6) Josens et al. 2005 (7) Houde 2002

Acknowledgements: Brow Well Fisheries, Epperstone Park Hatcheries, Caroline Liddell, David Aldridge, Calum MacNeil, Rachel Paterson, Chris Hassall Image credits: Nigel Taylor; broads-authority.gov.uk; caviarexpress.com; thames-explorer.org.uk